Structural Resolvent Estimates and Derivative Nonlinear Schrödinger Equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiclassical resolvent estimates for Schrödinger operators with Coulomb singularities

Consider the Schrödinger operator with semiclassical parameter h, in the limit where h goes to zero. When the involved long-range potential is smooth, it is well known that the boundary values of the operator’s resolvent at a positive energy λ are bounded by O(h−1) if and only if the associated Hamilton flow is non-trapping at energy λ. In the present paper, we extend this result to the case wh...

متن کامل

Of Nonlinear Schrödinger Equations

The authors suggest a new powerful tool for solving group classification problems, that is applied to obtaining the complete group classification in the class of nonlinear Schrödinger equations of the form iψt +∆ψ + F (ψ,ψ ∗) = 0.

متن کامل

J ul 2 00 8 TENSOR PRODUCTS AND CORRELATION ESTIMATES WITH APPLICATIONS TO NONLINEAR SCHRÖDINGER EQUATIONS

We prove new interaction Morawetz type (correlation) estimates in one and two dimensions. In dimension two the estimate corresponds to the nonlinear diagonal analogue of Bourgain's bilinear refinement of Strichartz. For the 2d case we provide a proof in two different ways. First, we follow the original approach of Lin and Strauss but applied to tensor products of solutions. We then demonstrate ...

متن کامل

Resolvent Estimates Related with a Class of Dispersive Equations

We present a simple proof of the resolvent estimates of elliptic Fourier multipliers on the Euclidean space, and apply them to the analysis of time-global and spatially-local smoothing estimates of a class of dispersive equations. For this purpose we study in detail the properties of the restriction of Fourier transform on the unit cotangent sphere associated with the symbols of multipliers.

متن کامل

Numerical Continuation for Nonlinear SchrÖdinger Equations

We discuss numerical methods for studying numerical solutions of N-coupled nonlinear Schrödinger equations (NCNLS), N = 2, 3. First, we discretize the equations by centered difference approximations. The chemical potentials and the coupling coefficient are treated as continuation parameters. We show how the predictor–corrector continuation method can be exploited to trace solution curves and su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2012

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-012-1524-x